skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Selsis, Franck"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Given the inexorable increase in the Sun’s luminosity, Earth will exit the habitable zone in ∼1 Gyr. There is a negligible chance that Earth’s orbit will change during that time through internal Solar System dynamics. However, there is a ∼ 1 per cent chance per Gyr that a star will pass within 100 au of the Sun. Here, we use N-body simulations to evaluate the possible evolutionary pathways of the planets under the perturbation from a close stellar passage. We find a ∼ 92 per cent chance that all eight planets will survive on orbits similar to their current ones if a star passes within 100 au of the Sun. Yet a passing star may disrupt the Solar System, by directly perturbing the planets’ orbits or by triggering a dynamical instability. Mercury is the most fragile, with a destruction rate (usually via collision with the Sun) higher than that of the four giant planets combined. The most probable destructive pathways for Earth are to undergo a giant impact (with the Moon or Venus) or to collide with the Sun. Each planet may find itself on a very different orbit than its present-day one, in some cases with high eccentricities or inclinations. There is a small chance that Earth could end up on a more distant (colder) orbit, through re-shuffling of the system’s orbital architecture, ejection into interstellar space (or into the Oort cloud), or capture by the passing star. We quantify plausible outcomes for the post-flyby Solar System. 
    more » « less